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Abstract. Fully relativistic first-principles electronic structure calculations of both the aver- 
age structure and a supercell approximation of silver-free incommensurately modulated 
calaverite (AuTe2) are presented. The differences between the results of both calculations 
are relatively small for the occupation numbers and the density of states, but quite dramatic 
for the shape of the Fermi surface. From the occupation numbers it is concluded that a 
previously proposed idea for explaining the modulation, based on mixed valencies for the 
gold atoms, is probably not applicable. The calculated Fermi surface of the average structure 
shows that the modulation cannot be understood in terms of Fermi-surface nesting either. 
The density of states in the supercell approximation compares very favourably with recently 
obtained x-ray photoelectron spectroscopy data. A rigid-potential calculation shows that 
the integral of the one-electron valence energies for the supercell is substantially more 
negative than the corresponding energy for the average structure, while the electrostatic 
energy difference has the opposite sign but is much smaller. This provides a qualitative 
indication of the electronic instability of the average structure with respect to the modulation 
of the supercell. Finally we conclude that Te s-like states a (Te p-Au d)-like complex 
dominate the energetics of the modulation. 

1. Introduction 

Recently there has been a revival of interest in the incommensurate gold-containing 
mineral calaverite Au, -xAgxTe2 (0 < x < 0.15) [l-71, which was of morphological inter- 
est already at the beginning of this century [8-111. The revival is caused by the discovery 
that this mineral belongs to the class of incommensurately modulated structures [ 11. The 
present paper deals with its electronic structure, which is of interest from two points of 
view. First, there is hope that detailed knowledge of the electronic structure will provide 
insight into the driving forces of the modulation. Secondly, the electronic structure is 
fundamental for calculations of physical properties of various kinds and thus for the 
study of the influence of the incommensurability on these properties. 

The calculation of the electronic structure for incommensurately modulated crystals 
is inhibited by the difficulty of handling an infinitely large unit cell, as is the case with 
quasi-crystals. The usual way to deal with this problem is to study a specific series of 
periodic approximations to the crystal structure and to deduce conclusions for the 
limiting case of the incommensurate structure from the trends in the approximate results, 
This technique has provided considerable understanding of spectra and wavefunctions, 
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mostly of one-dimensional model systems [4]. One-dimensional systems are more easy 
to study because of the availability of simple calculation techniques, such as the transfer 
matrix method. The most striking features for one-dimensional incommensurate systems 
are point-like parts in the spectrum and the (associated) occurrence of localised states. 
It should be noted, however, that the localised states are nothing other than electrons 
trapped by the potential, which is obviously much more difficult in higher dimensions. 
In this paper we will apply the study of periodic approximations to calaverite. 

The character of the electron orbits that enter the chemical bonding in calaverite, 
especially the Au 5d electrons, forces us to use relativistic self-consistent band-structure 
techniques. As a consequence of the time-consuming nature of these techniques, only 
the average structure and the first rational approximant (or periodic approximation), 
involving a supercell, which is four times as big as the unit cell of the average structure, 
are practically accessible. 

The calculations have been performed with the use of the ab initio relativistic 
augmented spherical-wave (RASW) method [12]. A short description of this method will 
be given in section 2. In section 3 the relevant crystal structures are discussed. The results 
of the calculations for the average structure can be found in section 4, and those for the 
supercell structure in section 5 .  In section 6 the calculated density of states for the 
supercell calculation is compared with the results of experimental x-ray photoelectron 
spectroscopy (XPS). Several possible driving forces of the modulation are discussed in 
section 7 and the conclusions of the paper are presented in section 8. 

2. The method of calculation 

In view of the necessity for the self-consistent treatment of all relativistic terms in the 
electron Hamiltonian and the requirement for efficiency because of the large number of 
atoms in the unit cell, the choice was made for an ab inirio local density calculation 
making use of the atomic sphere approximation (ASA) to the crystal potential. A suitable 
procedure of this kind is provided by the RASW scheme introduced by Takeda in 1979 
[ 121. This scheme is a fully relativistic version of the well known ASW method of Williams 
et a1 [13] and can be considered equivalent to similar generalisations of the linear muffin- 
tin orbitals (LMTO) method [14]. Recently we generalised the RASW method to include 
spin polarisation [ 151 and this newly developed code was used to perform the calculations 
presented in this paper, although the calculations are not spin polarised. Since both the 
original Takeda paper [ 121 and our paper presented the generalisation [ 151 contain a 
fairly detailed description of the RASW method, we will restrict ourselves in this paper to 
a general discussion of the approximations involved. 

The many-electron problem is reduced in a standard way to single-particle equations 
using density-functional theory. The local density approximation is applied using the 
exchange and correlation function of Perdew and Zunger [16], who fitted their function 
to Monte Carlo results of Ceperley and Alder [17]. The self-consistent field crystal 
potential is treated in the atomic sphere approximation, in which space is divided into 
atomic spheres and the remaining interstitial region. Inside the atomic spheres the 
potential is spherically averaged and in the interstitial region the potential is taken 
constant. The interstitial space is eliminated almost entirely by choosing the sphere radii 
(Wigner-Seitz radii) such that the sum of the sphere volumes in the unit cell is equal to 
the volume of the unit cell. This procedure will cause an unacceptably large overlap of 
atomic spheres if the crystal structure under consideration is not almost close-packed. 
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Figure 1. The unit cell of the average structure 
containing six atoms listed in table 2. Small full 
circles represent Au, large open circlesTe atoms. 
The empty spheres added in the calculation have 
been left out for clarity. The zig-zag chains of Te 
atoms are indicated by the lines joining the Te 
atoms. The directions of the primitive vectors U ,  
b, care also shown. 

Figure 2. The unit cell for the superstructure, 
according to the positions in table 4. The cell 
contains four unit cells of the average structure 
(see figure 1). Inside the Te atoms the phase of 
the modulation (if non-zero) is shown: + and x 
indicate +f and - f  respectively. The Au atoms in 
the centred positions have a nearly linear coor- 
dination, as in the average structure, because four 
neighbours stay in place and two others move 
perpendicular to the bond lines. The Au atoms on 
the corners of the cell and their equivalent atoms 
have now, due to the modulation, a nearly square 
coordination, because two neighbouring Te 
atoms are shifted towards them, two away from 
them, while two others stay in place. Empty 
spheres have been left out for clarity. 

In such cases this problem is circumvented by the insertion of empty atomic spheres. 
These empty spheres do not contain nuclear charge nor core electrons but some valence 
charge will flow into them in the self-consistency process. In this way a large part of the 
space is treated properly and the overlap of the spheres, which is neglected in the 
calculation, remains acceptable. The remaining interstitial charge is accounted for in 
the overlap and Hamiltonian matrices in a standard way. The integral over the unit cell 
of this contribution is converted into a sum of integrals over the atomic sphere boundaries 
using Green’s theorem for the basis functions and their energy derivatives [ 131. Since 
the determination of the crystal potential does not allow for interstitial charge, it has to 
be renormalised into the spheres at every iteration of the self-consistency procedure. As 
the potential approximation is particularly crude in the interstitial region, the amount 
of interstitial charge appearing in the calculation is one measure of the applicability of 
the atomic sphere approximation. 

The electrons in the crystal are divided into core and valence electrons, which are 
treated in different ways. The core electrons, which do not overlap substantially, are 
treated in an atomic type of approach. The valence electrons are represented by functions 
that form the basis of the overlap and Hamiltonian matrices. These functions are Bloch 
sums over the atom-centered RASW functions. In the formulation of our previous paper 
[15], these atom-centred functions consist in the interstitial region of four-component 
spinors with an outgoing spherical Hankel function multiplied by apure spin Pauli spinor 
for their large components. The small components, which are of a complicated form, 
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Figure 3. The Brillouin zone of the average struc- 
ture (C2/m). The irreducible wedge is contained 
between the broken lines. 

are determined by the requirement that the four-spinor is a solution to the Dirac equation 
with a constant potential. These interstitial functions are matched onto (augmented 
with) solutions of the radial Dirac equations inside all the atomic spheres. The entire 
atom-centred function is in this way specified by the orbital moment of the Hankel 
function and the orbital moment of the radial Dirac equations, which are taken equal, 
and by the principal quantum number of the radial Dirac equation, which determines 
the number of nodes of the function. Although the principal quantum number and 
orbital momentum are thus used to specify the atom-centred valence functions, it 
should be noted that the actual form of these functions, which changes during the self- 
consistency process, is quite different from that of the corresponding atomic orbitals. 
For Au we include the 6s, 6p and 5d functions and for Te the Ss ,  5p and 5d functions in 
the basis for the band matrix. 

In order to find the matching conditions for the augmentation of the basis functions, 
a spherical Hankel function centred on one atom is expanded in terms of spherical Bessel 
functions on all the other atoms, using the expansion theorem of the originalmw method 
[13]. Each expansion involves in principle an infinite number of orbital momenta for the 
Bessel functions. It can be shown, however, that the expansion coefficients decrease 
with increasing orbital momentum. Therefore the expansion is truncated after a finite 
orbital momentum value I ,  which we choose for both Au and Te functions to be 1 = 3. 
The valence functions associated with the inserted empty spheres are taken to be 1s and 
2p and the expansion of these functions is truncated at I = 2. 

Finally, the Brillouin zone integral has to be performed at each iteration. For the 
self-consistency process we use a simple zero-order sampling technique in the irreducible 
part with symmetry-determined weights. The density of states (DOS) was calculated with 
the more accurate first-order tetrahedron method. In this method the irreducible part 
of the Brillouin zone is divided into a number of irregular tetrahedra (simplices), which 
again are divided into small tetrahedra by repeated application of a fixed division 
procedure. The resulting tetrahedra cover the irreducible part completely and have 
approximately equal volumes. The band problem is solved for the set of corners shared 
by these tetrahedra. The contribution to the DOS for each tetrahedron is then calculated 
analytically using a linear expression for the band energies, which is obtained by inter- 
polation between the band energies at the four corners of the tetrahedron under con- 
sideration. 
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3. The incommensurate crystal structure and its approximants 

The class of incommensurately modulated structures is closely related to the class of 
quasi-crystals and both types can be described by a single formalism involving higher- 
dimensional periodicity. In both types of structure the long-range order is in principle 
perfect, in spite of the absence of lattice periodicity, giving rise to new types of diffraction 
patterns with sharp spots. In mathematical terms these structures are characterised by 
the property that the Fourier transform of the charge density (and the crystal potential) 
consists of components belonging to a set of integral linear combinations of more than 
three reciprocal lattice vectors. For crystals such as calaverite with a periodic average 
structure and an incommensurate modulation with only one wavevector, the reciprocal 
structure is spanned by four basis vectors [4]. In three dimensions these basis vectors are 
necessarily dependent with respect to the real numbers, but they are independent with 
respect to the rational numbers (rationally independent). It is possible to use the basis 
vectors to embed the three-dimensional non-periodic structure in a four-dimensional 
periodic structure [4]. The three-dimensional aperiodicity of the system is caused by the 
irrational relation of one or more components of the basis vectors. It is possible to 
recover the three-dimensional periodicity if one or more of the basis vectors are slightly 
changed such that the vectors become rationally dependent, and in that way we obtain 
a so-called rational approximant. For these periodic approximations the conventional 
electronic structure calculation techniques-using Bloch's theorem-can be applied. 
This procedure will be chosen in the rest of this paper. In order to find appropriate 
approximants, it is useful to consider briefly the general situation for incommensurate 
crystals. 

A distinction between incommensurately modulated structures and quasi-crystals 
can be seen from their x-ray diffraction patterns. For the former there always exists a 
sub-pattern of high-intensity spots, the main reflections, corresponding to a real space 
periodic structure, which is called the average structure. In addition, there is a set of 
peaks, the satellite spots, grouped around the high-intensity spots, with distances to the 
main reflections that are not commensurate with the periodicity of the average structure. 
The satellite reflections can be shown to occur because of displacive or other incom- 
mensurate modulations of the average structure. Often the amplitude of the modulation 
is not too big and the structure can be adequately described by a perturbation of the 
average structure. For the quasi-crystalline structures, however, such a division of the 
diffraction pattern, and thus of the structure, into an average structure and one or more 
incommensurate modulations, is in general not possible. In the following a description 
of the average structure and the modulations for calaverite are presented as well as the 
rational approximant used in the calculation. 

The average structure of calaverite was determined by Tunell and Pauling [B] .  Its 
space group is C2/m (International Tables, number 12). The vertices and corresponding 
centred positions of the almost rhombohedrally shaped unit cell (monoclinic angle 
90.04') are occupied by gold atoms, while the space between the gold planes is filled 
with two tilted ziz-zag chains of tellurium atoms in the direction of the monoclinic 
twofold crystallographic axis. Figure 1 shows the unit cell and the direction of the 
conventional unit vectors a,  b and c.  The primitive lattice translations and the atomic 
positions in the unit cell are listed in tables 1 and 2, together with the Wigner-Seitz radii 
of the atomic spheres used in the calculation, including the empty spheres mentioned in 
the previous section, which are inserted to obtain a reasonable space filling. 

Accurate determinations of the incommensurate modulation were performed by 
Schutte and de Boer [ 5 ] .  There is a displacive as well as an occupation modulation 
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Table 1. Primitive lattice translations (row vectors) of the average structure in atomic units. 

Primitive lattice vectors 

1 6.7977 -4.1710 0.0000 
2 6.7977 4.1710 0.0000 
3 0.0000 0.0000 9.5810 

Table 2. Atomic positions in the unit cell (row vectors) of the average structure and their 
Wigner-Seitz (ws) radii in atomic units. Inserted empty spheres are indicated by e.s. 

Atom Sym. class Position ( x ,  y ,  z )  ws radius 

1 Au 1 0.000 0.000 0.000 2.9651 
2 T e  2 9.371 0.000 2.762 2.9651 
3 T e  2 4.224 0.000 6.819 2.9651 
4 e.s. 3 0.000 0.000 4.791 2.5796 
5 e.s. 4 4.503 0.000 2.019 2.5796 
6 e s .  4 9.093 0.000 7.562 2.5796 

Table 3. Primitive lattice translations (row vectors) of the superstructure in atomic units 

Primitive latice vectors 

1 13.5954 0.0000 9.5810 
2 13.5954 0.0000 -9.5810 
3 0.0000 8.3420 0.0000 

with the same incommensurate wavevector q = -0.4076d + 0.4479c*, where asterisks 
denote reciprocal vectors. The occupation modulation leads to partial occupation of the 
gold positions, with a probability of finding Ag atoms on Au sites of at most 0.15. 
The displacive modulation is most important on tellurium sites with an amplitude of 
approximately 0.76 au parallel to the twofold axis and primarily a first-order harmonic 
character. There is also a small modulation of the gold and silver positions ( ~ 0 . 0 8  au). 

Given the time-consuming nature of the chosen method of calculation, we could not 
treat more than the displacive modulation of the tellurium atoms. The lowest-order 
rational approximant distinct from thezero-order average structure, hasq = -tu* + t c * ,  
such that the unit cell becomes four times as large as that of the average structure. The 
relative phases of the Te atoms can be approximated by multiples of 1/4 in the same way 
as we treated q, while the actual phase values for the approximated q are k0.20, k0.05 
and so on. The phase offset, which should be fixed for a commensurate approximation, 
is chosen such that the modulation effect is maximal. The supercell now contains the 
two limiting environments of Au atoms found in the actual incommensurate structure, 
namely the nearly linear and the nearly square planar coordination by Te atoms. In 
figure 2 the ac plane of the supercell is shown, with the displaced tellurium atoms and 
the two different Au coordinations. The primitive lattice translations and the positions 
of the atoms and empty spheres are listed in tables 3 and 4. The positions of the empty 
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Table 4. Atomic positions in the unit cell (row vectors) of the superstructure and their 
Wigner-Seitz (ws) radii in atomic units. Inserted empty spheres are indicated by e.s. 

Atom Sym. class Position ( x ,  y ,  z )  ws radius 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

A u  
A u  
Au 
Au 
T e  
T e  

Te 
T e  
Te 
Te 
Te 
Te 

e.s. 
e.s. 
e.s. 
e.s. 
e.s. 
e.s. 

e.s. 
e.s. 
e s .  
e.s. 
e.s. 
e.s. 

1 
1 
2 
2 
3 
3 

3 
3 
4 
4 
4 
4 

5 
5 
6 
6 
7 
7 

7 
7 
8 
8 
8 
8 

0.000 0.000 0.000 
0.000 0.000 -9.581 
6.798 4.171 -9.581 
6.798 4.171 0.000 
4.224 0.000 6.819 
4.224 0.000 -2.762 

9.371 0.000 -6.819 
9.371 0.000 2.762 
2.574 4.841 2.762 
2.574 3.501 -6.819 

11.022 3.501 -2.762 
11.022 4.841 6.819 

0.000 0.000 4.791 
0.000 0.000 -4.791 
6.798 4.171 4.791 
6.798 4.171 -4.791 
4.503 0.000 -7.562 
4.503 0.000 2.019 

9.093 0.000 7.562 
9.093 0.000 -2.019 

11.301 4.171 -7.562 
11.301 4.171 2.019 
2.295 4.171 7.562 
2.295 4.171 -2.019 

2.9651 
2.9651 
2.9651 
2.9651 
2.9651 
2.9651 

2.9651 
2.9651 
2.9651 
2.9651 
2.9651 
2.9651 

2.5796 
2.5796 
2.5796 
2.5796 
2.5796 
2.5796 

2.5796 
2.5796 
2.5796 
2.5796 
2.5796 
2.5796 

spheres are not modulated because of symmetry considerations. The space group for 
this superstructure is P2/c and the reciprocal lattice has space group P2/m (International 
Tables, number 13 and 10, respectively). 

4. Results for the average structure 

Self-consistent results with a cubic mesh of 100 k-vectors in the irreducible wedge of the 
Brillouin zone (figure 3) have been obtained to an accuracy of electrons per atom. 
The density of states was calculated with 2048 tetrahedra in the irreducible wedge. The 
interstitial charge was 0.42 electrons per unit cell, i.e. 1.8% of the 23 valence electrons, 
which indicates a reasonable space filling. The partial occupation numbers can be found 
in table 5 ,  the bands along symmetry directions in the Brillouin zone in figure 4, and the 
total and partial density of states (DOS) in figure 5. 

The overall picture of the band structure is quite simple: From - 13.4 to - 10.0 eV 
with respect to the Fermi level the Te 5s bands are well separated from the rest of the 
valence bands. The Au 5d contributions extend from -6.5 to -4.0 eV with a small, 
extended tail up to +1.5 eV. The main contribution to the DOS at the Fermi energy 
comes from the Te 5p states with small contributions from Au 5d and empty sphere 
states. Although the pure spin character of the states is removed by the implicit spin- 
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Table 5 .  Atomic charges in the unit cell of the average structure. Note the positive sign of 
the electron charge. The valence charge is split into eigenstates, labelled with K ,  of the 
operator 1 + aL. With K = -1 - 1 for j = 1 + 1 and K = 1 for j = 1 - 4 the listed contributions 
can be added to obtain the usual s ,  p,  d and f parts. 

Sym. class 1 2 3 4 
Atom A u  Te e.s. e s .  
Number of atoms 1 2 1 2 
Nuclear charge -79 -52 0 0 

Core charge 
Valence charge 

K = - 1  
K = - 2  
K = + 1  

K = - 3  
K = + 2  
K = - 4  

K = + 3  
Total electrons 
Total atom 

68.00 

0.87 
0.41 
0.29 
5.36 
3.70 
0.03 
0.02 

78.69 
-0.31 

46.00 

1.72 
1.75 
1.07 
0.10 
0.07 
0.02 
0.02 

50.75 
- 1.25 

~~ 

0.00 0.00 

0.33 0.37 
0.24 0.29 
0.13 0.15 
0.09 0.11 
0.06 0.07 

0.85 0.98 
+0.85 +0.98 

v x  r Y M  A I -  

Figure 4. Energy bands of the average structure 
along the symmetry directions indicated in figure 
3. The horizontal broken line is the Fermi level. 

orbit coupling in the Dirac equation, the energy bands are still twofold degenerate due 
to the inversion symmetry of the average structure (Kramers degeneracy). The bands 
23/24 and 25/26 cross the Fermi level, while the bands 21/22 approach the Fermi level 
at r. Between bands 25/26 and 27/28 there is a gap of nearly 2 eV over a large portion 
of the Brillouin zone, creating a minimum in the total DOS at + 1.8 eV. 

5. Results for the superstructure 

The self-consistent calculation has been carried out with a cubic mesh of 30 k-vectors in 
the irreducible wedge of the Brillouin zone. This gives approximately the same density 
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200 I 

-15 -10 -5 0 
Energy (eV) 

l a )  

Au s 
50 

z I , ,  , , , , , , ~, ,-, , , , , -1 5 0  

Energy (eV) 
l b )  

20 

10 
ITe d 

-15 -10 -5 

Energy (eV) 
I C )  

Figure 5 .  The density of states (DOS) for the average structure. In ( a )  the total DOS is shown 
and in ( b )  and (c) the partial DOS for the Au- and Te-centred crystal states. 

of k-vectors as used in the sampling of the wedge for the average structure, because the 
wedge of the superstructure is four times smaller than that of the average structure. The 
DOS calculation has been performed with 1024 tetrahedra in the irreducible wedge. The 
same convergence criteria as in case of the average structure have been used. The 
interstitial charge for this calculation is 2.5 electrons per unit cell, i.e. 2.7% of the 92 
valence electrons. This is somewhat more than for the average structure, but still quite 
acceptable. 

The occupation numbers for the symmetry-inequivalent atoms are listed in table 6. 
The differences with the corresponding atoms in the average structure are small. The 
energy bands (figure 7) plotted along the symmetry directions of the irreducible wedge 
as indicated in figure 6 show greater differences compared with the average structure, 
at least in the neighbourhood of the Fermi level. The bands are still doubly degenerate 
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Table 6. Atomic charges in the unit cell of the superstructure. Note the positive sign of the 
electron charge. 

Sym. class 1 2 3 4 5 6 7 8 
Atom Au A u  Te Te e.s. e.s. e.s. e.s. 
Number of atoms 2 2 4 4 2 2 4 4 
Nuclearcharge -79 -79 -52 -52 0 0  0 0 

Core charge 68.00 68.00 46.00 46.00 0.00 0.00 0.00 0.00 
Valencz charge 

K = - 1  0.87 0.87 1.71 1.70 0.35 0.32 0.40 0.36 
K =  -2 0.45 0.40 1.74 1.72 0.26 0.24 0.32 0.28 
K = + l  0.32 0.28 1.06 1.05 0.14 0.12 0.16 0.15 
K =  -3 5.34 5.35 0.10 0.10 0.10 0.09 0.13 0.10 
K = + ? ,  3.67 3.68 0.07 0.07 0.06 0.06 0.08 0.06 
K =  -4 0.04 0.03 0.02 0.03 
K = + 3  0.03 0.02 0.02 0.02 

Total electrons 78.71 78.63 50.72 50.70 0.90 0.83 1.09 0.96 
Total atom -0.29 -0.37 -1.28 -1.30 +0.90 +0.83 +1.09 +0.96 

Figure 6. The Brillouin zone of the superstructure (P2). The symmetry lines and irreducible 
part are shown in (a ) ,  the relative position with respect to the Brillouin zone of the average 
structure (figure 3) is plotted in (b ) .  

because of the inversion symmetry of the supercell, but the splitting of bands due to the 
modulation can clearly be seen. The effect of the change in the energy bands on the 
Fermi surface is in fact quite dramatic. Therefore, the interpretation of experimental 
data, such as de Haas-van Alphen oscillations, can clearly not be based on the Fermi 
surface of the average structure, and this sensitivity to the modulation implies that we 
should also be very cautious about using the Fermi surface of the supercell. 

The total and partial DOS of the supercell are shown in figure 8. The splitting of the 
bands in the supercell is largely integrated out and the remaining splittings are certainly 
too small to observe experimentally, except for the new peak structure that appeared at 
f 4 . 5 e V .  It would be interesting to see whether this can be observed in an x-ray 
absorption spectroscopy experiment. The new peak is largely due to states situated on 
empty spheres and Te atoms. 
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0 

v x  r A C ~  Y 

Figure 7. Energy bands of the superstructure 
along the symmetry directions indicated in figure 
6(a). The horizontalbrokenlineistheFermilevel. 

6. The XPS valence spectrum 

The calculated valence DOS for the supercell structure can be compared with the valence 
spectra from x-ray photoelectron spectroscopy (XPS) measurements performed by van 
Triest [19] with an A1 KLY source of 1486.6 eV. We broaden the calculated DOS of figure 
8(a) to include lifetime effects and finite experimental resolution with a Lorentzian 
convolution with a full width at half-maximum (FWHM) of 0.50 + O.l(EF - E )  eV and 
Gaussian convolution with a constant FWHM of 0.50 eV. In figure 9(a) this broadened 
DOS is compared with experiment. The experimental and calculated Fermi level are 
lined up and the experimental curve is scaled down to match the calculated maximum 
near -5 eV. 

The double peak structure due to the Au d-like states at -6eV is in excellent 
agreement with experiment. Also the gap, reduced by broadening, near -9 eV and the 
Te s-like states at -12 eV are found at the same energies as in the experiment. The 
remaining discrepancies can be found in the peak heights and the relative contribution 
of the Te p-like states. They can be attributed to the different scattering cross sections 
of the different crystal functions contributing to the total experimental spectrum, which 
are neglected in the calculation, but should in fact be incorporated through the appro- 
priate matrix elements of the transitions. 

To incorporate these matrix elements in an approximate way we use the atomic cross 
sections of Yeh and Lindau [20] as multiplicative factors for the different partial DOS. 
For those partial DOS for which the equivalent atomic orbital is not occupied in the 
ground state, hence for which no cross sections can be found in the table of Yeh and 
Lindau, we use the corresponding cross section of the nearest atom in which this orbital 
is occupied. In table 7 we list the cross sections used in the calculation of the weighted 
DOS, which is shown in figure 9(b). Including these effects in the calculation brings it into 
better agreement with the experimental data: the relative contributions of the Te p- and 
s-like states have decreased; for the latter about right, for the former rather too much. 
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Figure 9. Experimental XPS valence spectrum (dots) and broadened total DOS of the super- 
structure (full curve) are shown in ( a ) .  For details of experiment and broadening, see text. 
The same experimental data are shown with the weighted total DOS in ( b ) .  The weights for 
the calculated DOS are taken from table 7. 

Table 7. Scattering cross sections in kilobarns for the crystal functions derived from the 
closest corresponding atomic subshells and their cross sections for A1 Kn radiation taken 
from [20]. 

Crystal function Atomic shell U (kb) u/electron 

Au 6s 
Au 6p 
Au 5d 
Au 5f 

Te 5s 
Te 5p 
Te 5d 
Te 4f 

e s .  1s 
e.s. 2p 
e.s. 3d 

Au 6s' 
TI 6p' 
Au 5d" 
Pa 5f2 

Te 5s' 
Te 5p4 
La 5d' 
Ce 4f' 

H Is' 
B 2p' 
Sc 3d' 

0.29 
0.21 

8.0 

1.7 
2.6 
0.76 
2.2 

0.0020 
0.0024 
0.053 

26 

0.29 
0.21 
2.6 
4.0 

0.85 
0.65 
0.76 
2.2 

0.0020 
0.0024 
0.053 

We may conclude that the experimental valence XPS spectrum is explained quite well 
in terms of the calculated density-of-states and cross-section effects, and that a better 
quantitative agreement can probably be obtained by the explicit calculation of the 
transition matrix elements. Without the proper inclusion of these matrix elements it is 
certainly not possible to study the differences between calculated and experimental DOS 
that are due to the remaining structure approximation in the supercell. 

7. The driving forces of the modulation 

The understanding of the incommensurate modulation in calaverite is one of the goals 
of this paper. In the following subsections we will therefore study several possible 
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mechanisms for the modulation. First, we will explore the possibility that the modulation 
is a consequence of Fermi-surface nesting. Secondly, we will discuss the possibility that 
the modulation is connected with the existence of (static) mixed valencies for the gold 
atoms, as was suggested in previous publications [3,5,21]. Finally, we will study the 
driving forces of the modulation by comparing the energies involved in the average 
structure and in the superstructure. This comparison, a frozen phonon calculation, is 
made on the basis of Andersen’s local force theorem, which relates the total energy 
difference of two self-consistent electron systems to a difference in Madelung energy 
and a difference in the sum of one-electron energies. 

7.1, Fermi-surface nesting 

One of the possible reasons for the instability of the average structure with respect to an 
incommensurate lattice deformation is the occurrence of Fermi-surface nesting. A 
model description and a criterion for the occurrence of a periodic lattice deformation 
and its accompanying charge-density wave have been provided by Chan and Heine [22], 
who formulate their model using the Frohlich electron-lattice Hamiltonian in terms of 
a first-order electron-phonon coupling and a generalised electronic susceptibility. The 
criterion for the appearance of a periodic lattice deformation shows that the instability 
is favoured by a peak in the susceptibility at the wavevector of the modulation, as well 
as by a large electron-phonon coupling. If the Fermi surface contains flat pieces that can 
be brought together by a particular wavevector, the susceptibility shows a peak at this 
‘nesting’ wavevector [23]. The flat pieces of Fermi surface lead to a peak in the DOS at 
the Fermi level. An example of a material showing an incommensurate lattice distortion 
due to Fermi-surface nesting is thought to be 1T-TaS, [24]. 

From the above considerations it is interesting to study the Fermi surface of the 
average structure and look for possible nesting. So energy contours were calculated on 
a set of planes parallel to the u*c* plane. A representative set of these contours for the 
bands 23/24 is shown in figure 10. Although all these planes clearly show structure in 
the (-a* + c * )  direction, which is approximately parallel to the wavevector of the 
modulation, there is no nesting to invoke an instability, and this is in agreement with the 
absence of clear peak structures in the DOS at the Fermi level. Also bands 25/26, which 
form small electron pockets at several places in the Brillouin zone, do not show any 
nesting. 

We conclude that the instability of the average structure is not due to nesting of the 
Fermi surface. However, this does not imply the absence of a peak in the susceptibility, 
because this depends not only on the number of states available for transitions (large in 
the case of nesting) but also on the matrix elements of these transitions. Thus the 
instability can be due to the enhancement of the susceptibility by matrix element effects 
or by a large electron-phonon coupling. 

7.2.  Mixed valencies 

The suggestion that the modulation in calaverite is connected with the appearance of 
mixed valencies of $1 and +3 for the Au atoms, as made in previous publications 
[3,5,21], was based on two analogies with other materials. First there are materials in 
which linear and square planar coordinations for Au exist. Examples are AuCl with a 
linear coordination and a valency for Au of +1 and AuCl, with square planar coor- 
dination and valency + 3 .  Furthermore it is known that in transition-metal pyrites like 



First-principles calculations fo r  modulated calaverite 4843 

-0.4622 0.0000 0.4622 -0.4622 0.0000 0.4622 

R iv 
(? 
0 

0 
0 
4 0  

8 
CO 
h 
0 
(? 

-0.4622 0.0000 0.4622 

Figure 10. Energy contours of bands 23/24 for the 
average structure. The planes k ,  = C for C = 0, 
C = 0.1174 and C = 0.2348 are shown in (a ) ,  ( b )  
and (c). Broken curves are under E F ,  full curves 
above. The cut of the Fermi surface through the 
plane is indicated by bold curves. From the dif- 
ferent shapes of the Fermi surface in these planes, 
we clearly see the absence of parallel planes in the 
Fermi surface itself. 

FeS2 the sulphur chains dimerise into S;-. If (on average) such a dimerisation occurs in 
the Te chains of calaverite, the Au atoms would be forced into the unstable valency 
+2. This unstable valency could drive the system into a structure with modulated 
coordinations and valencies, which the extremes of the modulation correspond to the 
situations for Au in AuCl and in AuCl,. Several observations seem to support this 
idea. Schutte and de Boer [ 5 ]  mentioned that the reliability factor of their diffraction 
refinement procedure could be improved if they allow for silver substitution. The silver 
then prefers to sit in the linear coordinated positions, which is in agreement with the 
chemical stability of Ag+ and the instability of Ag3+. Finally we note that in sylvanite, 
AuAgTe4, which is not modulated, the Ag atoms can be found in positions with a nearly 
linear coordination and the Au atoms in those with a square planar coordination. 

The superstructure approximation for calaverite, described in secticon 3, is chosen 
in such a way that the extrema1 coordinations of the Au atoms in the incommensurate 
system are present. This and the local character of the effects of modulated coordinations 
suggest that mixed valencies, if present in the real system, will fall out of the super- 
structure calculation. The approximation to the crystal potential used in RASW is also 
unlikely to restrict the freedom of the valencies to modulate. The spherical averaging 
within the atomic spheres, of course, eliminates part of the difference between both Au 
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coordinations. However, the difference in the monopole contribution to the Madelung 
potential, which is taken properly into account, should lead to reliable predictions of 
the atomic monopole charge distribution in the crystal. 

From the partial Au DOS of the average structure (figure 5 ( b ) )  it can be seen that the 
d-like states have only a very small tail extending through the Fermi level. It is therefore 
not surprising that the charge difference between both types of Au atomic spheres in the 
self-consistent superstructure is rather small (0.08 electrons, see table 6). This may not 
be very conclusive because of the arbitrary choice of the sphere radii in the crystal, but 
even if these radii are changed we do not find larger monopole differences. The partial 
occupation numbers per 1-value also show no larger differences than the total charges. 
The non-spherical charge density will almost certainly show larger differences between 
the Au sites, but this is not immediately available from our calculation. 

The absence of a significant difference in the valencies between the Au sites is also 
demonstrated by core-level studies. When we construct the potential of the super- 
structure from the rigidly shifted self-consistent charge densities of the average structure, 
the Madelung term in the potential introduces a difference at the sphere boundary of 
0.2 eV between both types of Au sites due to their different coordinations. The core 
levels calculated with this (rigid) potential show, of course, a difference just equal to 
0.2 eV. If we drive the system to self-consistency from this point, we observe that the 
potential difference at the sphere boundaries does not change significantly, because 
there is almost no charge flow between the different atomic spheres. However, within 
the atomic spheres the charge redistributes in order to screen the potential difference, 
and the final, self-consistent Au core levels differ by no more than 0.03 eV. For tellurium 
the differences between the core levels at symmetry-inequivalent sites are smaller than 
0.05 eV. 

The absence of significant core-level splitting predicted by our calculations is in 
agreement with the XPS data of van Triest et a1 [19], who observe no splitting for the Au 
core levels. For the Te levels they see an interesting phenomenon, which seems to fit in 
with the experience of other experimentalists [6]. There is a splitting of the Te states of 
several electronvolts, which is angle- and time-dependent and therefore attributed to a 
surface reconstruction following the scraping of the sample surface. The size of the 
splitting as well as the angle and time dependence exclude the possibility that the splitting 
is a bulk (ground-state) effect. 

We can conclude from the preceding that the differences in coordination of both 
types of Au positions do not lead to observable core-level splitting, nor to substantial 
charge transfer, in contradiction with the predictions of the mixed valence model. It 
might, however, be possible to connect the remarkable observations concerning the 
coordinations and the preferences of gold and silver for different coordinations with an 
energy gain due to a modulated covalency in the bonding. In order to study that idea, it 
would be interesting to calculate the non-spherical charge-density distribution for both 
the average structure and the superstructure. 

7.3. Energetics of the modulation 

The obvious way to study the origin of the modulation is to compare the total energies of 
the average structure and the superstructure. However, it iswell known that calculational 
methods like the one we use in this paper, based on the rather crude atomic sphere 
approximation to the crystal potential, do not give reliable phonon frequencies. One 
way to avoid the typical problems of such a comparison and to obtain qualitatively 



First-principles calculations f o r  modulated calaverite 4845 

Energy (eV) 

Figure 11. Integrated one-electron energy dif- 
ference between superstructure and average 
structure (see text). The energy difference is cal- 
culated per superstructure unit cell. The Fermi 
level is indicated by the vertical broken line. 

correct results is to use Andersen’s local force theorem [25].  This theorem relates the 
difference in the total energies of two self-consistent structures to the difference in the 
sum of the one-electron energies between the undisturbed self-consistent system and a 
system with this self-consistent potential rigidly shifted according to the perturbation, 
plus a simple electrostatic term for the change in the Madelung energy. The theorem 
is correct to second order in the charge-density difference. Since the charge-density 
difference between the average structure and the superstructure is very small, we expect 
that a calculation making use of the local force theorem will give qualitatively correct 
results. 

First we calculate with the rigidly shifted potential the Madelung contribution to the 
energy difference. This turns out to be approximately 0.3 eV per superstructure unit 
cell, stabilising the average structure. The small value of the difference is due to the 
relative neutrality of the atomic spheres as well as the large interatomic distances of the 
atoms that participate in the modulation. As observed before, the sphere radii are rather 
arbitrary, but if they are changed the electrostatic term remains very small. The one- 
electron term of the energy difference was calculated from the difference in DOS. The 
result can be seen most clearly from a plot of the integrated energy difference A ( E ) ,  
given by 

E 

N E )  = j dE & S S ( E )  - g*s(E)I 
--cc 

where g,, and g,, denote the DOS of the superstructure and the average structure 
respectively, and both DOS are taken per superstructure unit cell. The plot of A ( E )  is 
shown in figure 11. First of all it can be noted that the energy difference has the correct 
sign, favouring the superstructure, and is much larger than the opposing electrostatic 
term. The superstructure is in total more stable by 5.2 eV, i.e. about 0.5 eV per atom. 
Remarkably enough the energy gain comes mostly from states quite far from EF,  and is 
almost equally distributed between the Te s-like states and the (Te p A u  d) complex. 
These observations are in agreement with the absence of Fermi-surface nesting and they 
are not in contradiction with the modulated covalency suggested in the previous section. 

8. Conclusions 

We have used conventional band-structure techniques to study the electrons in two 
approximate crystal structures of incommensurately modulated calaverite, namely the 
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average structure and a commensurate superstructure. The energy bands, the density 
of states and the occupation numbers for both structures have been compared. The 
density of states for the superstructure compares very well with experimental XPS data. 
Since the differences between both structures for the physical quantities mentioned 
above are small, it does not seem necessary to calcuiate higher-order periodic structure 
approximations. It has been observed, however, that the Fermi surface is very sensitive 
to the exact form of the modulation. With the techniques applied in this paper it is 
practically impossible to access higher-order approximations, because the next simplest 
structure approximation would have a wavevector q = -$a* + $c*, with 60 atomic 
spheres in the unit cell, while the next order of the continued-fraction expansion would 

As far as the driving forces for the modulation are concerned, we have discussed 
several models. We conclude that the previously proposed connection with mixed 
valencies for the Au atoms is not valid, and we have shown the absence of Fermi-surface 
nesting. Furthermore, we have provided a qualitative indication for the instability of the 
average structure by the comparison of one-electron energy sums and an electrostatic 
energy difference making use of Andersen’s local force theorem. While the small 
electrostatic term tends to stabilise the average structure, the one-electron energy 
difference is much larger and stabilises the superstructure with approximately 0.5 eV 
per atom. The integrated one-electron energy difference suggests that the origin of the 
modulation involves both the Te s-like states and the (Te p A u  d) complex. Finally we 
conclude that the remarkable observations concerning the coordinations of the gold and 
silver atoms in calaverite as well as sylvanite are not a consequence of energy gain by an 
actual valence modulation, but could possibly find their origin in an energy gain due to 
a modulated covalency. To verify this idea we hope to perform calculations of the non- 
spherical charge density for both structures. 

give = -Ea* + 4 9c * with as many as 270 atomic spheres in the unit cell. 
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